Inhibition of neutral amino acid transport across the human blood-brain barrier by phenylalanine.

نویسندگان

  • B L Shulkin
  • A L Betz
  • R A Koeppe
  • B W Agranoff
چکیده

The delivery of large neutral amino acids (LNAAs) to brain across the blood-brain barrier (BBB) is mediated by the L-type neutral amino acid transporter present in the membranes of the brain capillary endothelial cell. In experimental animals, the L-system transporter is saturated under normal conditions, and therefore an elevation in the plasma concentration of one LNAA will reduce brain uptake of others. In this study, we used positron emission tomography (PET) to determine the effect of elevated plasma phenylalanine concentrations on the uptake of an artificial neutral amino acid, [11C]-aminocyclohexanecarboxylate ([11C]ACHC), in human brain. PET scans were performed on six normal male subjects after an overnight fast and again 60 min after oral administration of 100 mg/kg of phenylalanine. The plasma phenylalanine concentration increased by an average of 11-fold between the first and second scans. This increase produced a reduction in [11C]ACHC uptake in all brain regions but not in scalp. The mean +/- SD influx rate constant for whole brain decreased after phenylalanine ingestion from 0.036 +/- 0.002 to 0.019 +/- 0.004 ml/g/min. Kinetic analysis of the effect of plasma phenylalanine concentration on the rate of [11C]ACHC uptake is compatible with a model of competitive inhibition so that large increases in the concentration of one LNAA in plasma will reduce the brain uptake of other LNAAs across the human BBB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutral amino acid transport at the human blood-brain barrier.

Transport regulates nutrient availability in the brain, and many pathways of brain amino acid metabolism are influenced by precursor supply. Therefore, amino acid transport through the blood-brain barrier (BBB) plays an important rate-affecting role in brain metabolism. Information on the Km of BBB amino acid transport provides the quantitative basis for understanding the physiological importan...

متن کامل

Blood-brain barrier transport of 1-aminocyclohexanecarboxylic acid, a nonmetabolizable amino acid for in vivo studies of brain transport.

Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex ...

متن کامل

Effect of aspartame-derived phenylalanine on neutral amino acid uptake in human brain: a positron emission tomography study.

The possible effects of elevation of the plasma phenylalanine level secondary to the ingestion of aspartame on brain amino acid uptake in human subjects have been investigated by means of positron emission tomography (PET). 1-[11C]Aminocyclohexanecarboxylate [( 11C]ACHC) is a poorly metabolized synthetic amino acid that crosses the blood-brain barrier by the same carrier that transports natural...

متن کامل

Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier.

Several Na+-dependent carriers of amino acids exist on the abluminal membrane of the blood-brain barrier (BBB). These Na+-dependent carriers are in a position to transfer amino acids from the extracellular fluid of brain to the endothelial cells and thence to the circulation. To date, carriers have been found that may remove nonessential, nitrogen-rich, or acidic (excitatory) amino acids, all o...

متن کامل

High-affinity uptake of L-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes.

L-Kynurenine (KYN), an intermediary product in the kynurenine pathway of tryptophan metabolism, is the common precursor from which are formed both quinolinic acid, a potent endogenous "excitotoxin," and kynurenic acid, a nonselective antagonist of excitotoxins. The present work examines 3H-KYN transport in primary astrocyte cultures derived from the cerebra of newborn mice. Influx and efflux of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 64 3  شماره 

صفحات  -

تاریخ انتشار 1995